Soundness of embeddings
in the AlM-calculus modulo rewriting

Ali Assaf

Deducteam, Inria Paris-Rocquencourt
Ecole Polytechnique

Parsifal seminar
October 16, 2014

1/41



The AM-calculus as a logical framework

2/41



The AlM-calculus

m Simplest typed A-calculus with dependent types

m Expresses proofs of first-order logic through the Curry-Howard
correspondence

m Used as a logical framework

3/41



The AlM-calculus

sorts s = Type | Kind
terms M,N,A/B = x|s|Mx:AB|Xx:AM|MN
contexts [ n= - |Mx: A

4/41



r-M:A

(x:A)erl M- A: Type x:AFB:s

N-x:A I+ Type : Kind M-MNx:AB:s

M= A: Type MNx:A-M:B N-M:Mx:AB FrEN:A

NIN-Xx:AM:Mx:AB - MN:{N/x}B
r-M: A I+ B: Type A= B
r’-M:B
WF (T)

WF (T) r-A:s
WF (+) WF (T, x : A)




Using Al as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

6/41



Using Al as a logical framework

Logical framework in Wikipedia:

In logic, a logical framework provides a means to define
(or present) a logic as a signature in a higher-order type
theory in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in
the framework type theory.

To embed a given theory X in All, one must:
define a signature context ¥ in Al describing the theory X

define a translation from the terms of X to the terms of Al in
the context X.

6/41



System F in ATl

Define the signature context X as:

type
arrow

forall

term
lam

app
Lam

App

Type
type — type — type
(type — type) — type

type — Type

(term A — term B) — term (arrow A B)
term (arrow A B) — term A — term B
(NA : type. term (F A)) — term (forall F)
term (forall F) — MA : type. term (F A)

7/41



System F in ATl

Translate the types and the terms as:

[o]
[A— B]
[Va : Type. B]

[x]

[Ax : A. M]

[M N

[Aa : Type. M|

[M{A)] =

= «

arrow [A] [B]

= forall (A« : type. [B])

= X

lam (Ax : term [A]. [M])
app [M] [N]

Lam (A« : type. [M])
App [M] [A]

8/41



System F in ATl

The identity function id = Aa : Type. Ax : a. x is translated as:
[i[d] = Lam (A« : type.lam (Ax : term a. x))
The type A =Va : Type.a — « is translated as:

[A] = forall (A« : type. arrow o )

9/41



Completeness

If M is well-typed then [M] is well-typed in the context X:

FM:A = X [M]:terml[A]

10/41



Completeness

If M is well-typed then [M] is well-typed in the context X:
FM:A = X [M]:terml[A]
Define [A] = term [A]:

FMiA = T+[M]:[A]

10/41



Completeness

If M is well-typed then [M] is well-typed in the context X:
FM:A = X [M]:terml[A]
Define [A] = term [A]:
FM:A = X +[M]:[A]
If M is well-typed in ' then [M] is well-typed in the context ¥, [I']:

rEM:A = X[+ [M]:[A]

10/41



System F in ATl

The self-application of id is well-typed in the empty context:
Fid (A)id : A
Its translation is well-typed in X:

X app (App [id] [A]) [id] : [A]

11/41



Completeness

If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AlN.

12/41



Completeness

If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AlN.

If A'is provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

12/41



Completeness

If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AlN.

If A'is provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

If X is inconsistent (every A is inhabited) then Al is
inconsistent (every [A] is inhabited).

12/41



Completeness

If M is a proof of (has type) A in X then [M] is a proof of
(has type) [A] in AlN.

If A'is provable (is inhabited) in X then [A] is provable (is
inhabited) in AlN.

If X is inconsistent (every A is inhabited) then Al is
inconsistent (every [A] is inhabited).

What about the converse?

12/41



Soundness

Consistency: if X is consistent then Al is consistent.

13/41



Soundness

Consistency: if X is consistent then Al is consistent.

Conservativity: if [A] is provable in AN then A is provable in
X.

13/41



Soundness

Consistency: if X is consistent then Al is consistent.

Conservativity: if [A] is provable in AN then A is provable in
X.

Adequacy: every (normal) proof in Al corresponds to a proof
in X.

13/41



Soundness

Consistency: if X is consistent then Al is consistent.

Conservativity: if [A] is provable in AN then A is provable in
X.

Adequacy: every (normal) proof in Al corresponds to a proof
in X.

These are important properties for a logical framework!

13/41



Summary

Source = X, Target = Al
Embedding = signature ¥ + translation []
Completeness = typing in X = typing in Al

Soundness = typing in A\l = typing in X

14 /41



The AlM-calculus modulo rewriting as a logical framework

15/41



Limitations of Al

The embedding does not preserve term (proof) reduction :

M—*M =5 [M]—*[M]

16 /41



Limitations of Al

The embedding does not preserve term (proof) reduction :
M—*M =5 [M]—*[M]
The embedding does not preserve term (proof) equivalence:

M=M = [M]=[M]

16 /41



Limitations of Al

Systems with dependent types (e.g. the calculus of constructions)
have a conversion rule:

r=M:A A=B
r'-mM:B

In A, [T]+ [M] : [A] but [T] ¥ [M]: [B] (no completeness).

17 /41



Approach 1: Introduce explicit equivalence judgements and a
conversion term:

equiv : type — type — Type
refl : equivM M
beta : equiv(app (lam F) N)(F N)

conv : termA — equivAB — term B

Cons:
m Need to explicitely give the equivalence derivations.

m Adding conv pollutes the structure of the terms and needs to
be taken care of in the equivalence relation.



Approach 2: Translate typing derivations instead of A-terms

term

lam

hastype
typelam

Pros:

Type
(term — term) — term

term — type — Type
(Mx : term. hastype x A — hastype (F x) B) —
hastype (lam F) (arrow A B)

m conv does not interfere with the structure of the \-terms.

Cons:

m Lose Curry-Howard correspondence?

m Still need to explicitely give the equivalence derivations.



The Al-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:

r=EM: A = B: Type A=3r B
r'-mMm:B

20/41



The Al-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:

r=EM: A = B: Type A=3r B
r'-mMm:B

Add rewrite rules so that the translation preserves reduction.

20/41



The Al-calculus modulo rewriting

Idea: extend the conversion rule of the AlM-calculus with a rewrite
system R:
Fr=M: A I+ B: Type A=3r B
r-M:B

Add rewrite rules so that the translation preserves reduction (in
addition to binding and typing).

20/41



Preserving reduction

Signature context X:

type
arrow

term

lam

app

Rewrite rules R:

Type
type — type — type

type — Type
(term A — term B) — term (arrow A B)

term (arrow A B) — term A — term B

app(lamF)N — FN

21/41



Preserving reduction

Signature context X:

type : Type
arrow : type — type — type

term : type — Type
lam : (term A — term B) — term (arrow A B)
app : term(arrowAB) — term A — term B

Rewrite rules R:

term (arrowAB) — term A — term B
lamF — F
appMN — MN

22/41



Preserving reduction

Signature context X:
type : Type
arrow : type — type — type
term : type — Type
Rewrite rules R:
term (arrowAB) — term A — term B

Translation:

M A M = Ax:[A].[M]
[MN] = [M][N]

23/41



Preserving reduction

If M — M’ then [M] —* [M'].

24 /41



Preserving reduction

If M — M’ then [M] —* [M'].

Corollary

If M —* M’ then [M] —* [M].

24 /41



Preserving reduction

If M — M’ then [M] —* [M'].

Corollary

If M —* M’ then [M] —* [M].

Corollary
If M = M’ then [M] = [M'].

24 /41



Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
IfT = M:Athen L[]+ [M]:[A].
Works for any functional pure type system:
m System F

m Calculus of constructions

m Simple type theory

25 /41



Completeness

Recovered typing preservation.

Theorem (Cousineau & Dowek 2007)
IfT = M:Athen L[]+ [M]:[A].

Works for any functional pure type system:
m System F
m Calculus of constructions

m Simple type theory

What about soundness?

25 /41



On termination and soundness

Link between termination and soundness:

m Al is strongly normalizing

26 /41



On termination and soundness

Link between termination and soundness:

m Al is strongly normalizing

m Adding axioms (X) does not influence termination

26 /41



On termination and soundness

Link between termination and soundness:

m Al is strongly normalizing

m Adding axioms (X) does not influence termination

m Can be used to show soundness:

m Consistency: there is no normal term of type [L]

26 /41



On termination and soundness

Link between termination and soundness:

m Al is strongly normalizing

m Adding axioms (X) does not influence termination

m Can be used to show soundness:

m Consistency: there is no normal term of type [L]

m Adequacy: if [T]F M : [A] and M is a normal form, then
M = [N] for some N such that T N : A

26 /41



On termination and soundness

Link between termination and soundness:

m Al is strongly normalizing

m Adding axioms (X) does not influence termination

m Can be used to show soundness:

m Consistency: there is no normal term of type [L]

m Adequacy: if [T]F M : [A] and M is a normal form, then
M = [N] for some N such that T N : A

m Conservativity: if [[] - M : [A] then M reduces to a normal
form [N] for some N such that T N : A.

26 /41



On termination and soundness

m Adding rewrite rules (R) can break strong normalization:

m because — g does not terminate

27 /41



On termination and soundness

m Adding rewrite rules (R) can break strong normalization:

m because — g does not terminate

m or because —r U — 3 does not terminate

27 /41



On termination and soundness

m Adding rewrite rules (R) can break strong normalization:

m because — g does not terminate
m or because —r U — 3 does not terminate

m or even because — g does not terminate for well-typed terms

27 /41



On termination and soundness

m Adding rewrite rules (R) can break strong normalization:

m because — g does not terminate
m or because —r U — 3 does not terminate

m or even because — g does not terminate for well-typed terms

m Need to find other solutions.

27 /41



Summary

m A1 embeddings do not preserve reduction.

m Obstacle for embedding theories with dependent types.
m Adding rewrite rules to Al helps recover completeness...
m ... but can break soundness.

28 /41



Soundness in the Al-calculus modulo

29/41



Approach 1: termination models

Idea: build a model for A/ X
m in the algebra of reducibility candidates

m or in a general notion of -algebra.

30/41



Approach 1: termination models

Idea: build a model for A/ X
m in the algebra of reducibility candidates
m or in a general notion of -algebra.

The model implies strong normalization of A[1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

30/41



Approach 1: termination models

Idea: build a model for A/ X
m in the algebra of reducibility candidates
m or in a general notion of -algebra.

The model implies strong normalization of A[1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for A[1/STT and for AI1/COC.

30/41



Approach 1: termination models

Idea: build a model for A/ X
m in the algebra of reducibility candidates
m or in a general notion of -algebra.

The model implies strong normalization of A[1/X. Use this to prove
soundness (consistency, adequacy, conservativity).

Theorem (Dowek 2014)
There is a model for A[1/STT and for AI1/COC.

Problem: implies strong normalization in X, so at least as hard to
prove as strong normalization in X.

30/41



Approach 2: relative normalization

If [T] = M : [A], what can we say about M?

31/41



Approach 2: relative normalization

If [T] = M : [A], what can we say about M?

Example

If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa: Type. Xx:a.x)B:0—f
It is well-typed in AI/X:

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

31/41



Approach 2: relative normalization

If [T] = M : [A], what can we say about M?

Example

If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa: Type. Xx:a.x)B:0—f
It is well-typed in AI/X:

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

But it reduces to Ax : term 5. x = [Ax : 5.x], a term that is
well-typed in X.

31/41



Approach 2: relative normalization

If [T] = M : [A], what can we say about M?

Example

If X is the simply-typed A-calculus, the polymorphic identity
function is not well-typed:

B:Typel (Aa: Type. Xx:a.x)B:0—f
It is well-typed in AI/X:
B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3
But it reduces to Ax : term 5. x = [Ax : 5.x], a term that is

well-typed in X.
Idea: reduce only what is necessary.

31/41



Erasure

Define an erasure from AlN/X to X:

x| = x
IAx:AM| = Ax:|A|. M|
IMN| = [MI][N|
lterm Al = |A]
A= Bl = [lAll =Bl

Erasure is the inverse of the translation:

M = M
AT = A

32/41



Proving soundness

What statement should we prove?
m [f[I]JF M:[A] in AN/X then T+ [M|: Ain X?

33/41



Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

33/41



Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

m If [ M:[A] in A[/X then M —* M’ such that
M= |M|:Ain X7

33/41



Proving soundness

What statement should we prove?

B :type - (Aa : type. Ax : term . x) 3 : term 3 — term 3

m IFT E M A} in AN/ X then M —~ M" such that
[FTFM:Nx:A.[B] [F[fFN:A
[FMEMN:[B]

33/41



Proving soundness

What statement should we prove?

mlf[[JFM:Ain Al/X then M —* M’ and A —* A’ such
that T = [M'| - ||A']| in X7

34/41



Proving soundness

What statement should we prove?

[rM,x:ArM:B
MEM:AM:MNx:AB

34/41



Proving soundness

What statement should we prove?

[rM,x:ArM:B
MEM:AM:MNx:AB

mlfTEM:Ain A[1/X then T —* ', M —* M’, and
A —* A such that ||| = [M'] : ||A|| in X7

34/41



Proving soundness

What statement should we prove?

[rM,x:ArM:B
MEM:AM:MNx:AB

F o :type. Ax i terma. x : Ma : .term 8 — term 3

34/41



Proving soundness

What have we learned?
AM/X can type more terms than X.

These terms can be used to construct proofs for the
translation of X types.

The A/X terms that inhabit the translation of X types can
be reduced to the translation of X terms.

35/41



Proving soundness

What have we learned?
AM/X can type more terms than X.

These terms can be used to construct proofs for the
translation of X types.

The A/X terms that inhabit the translation of X types can
be reduced to the translation of X terms.

Need higher-order reasonning.

35/41



Reducibility

Let I’ be a context in X. Define the predicate ' = M : A by
induction on A:

36 /41



Reducibility

Let I’ be a context in X. Define the predicate ' = M : A by
induction on A:

m If A=typethen ' E M : Awhen M —* M’ such that
e M| : Type.

36 /41



Reducibility

Let I’ be a context in X. Define the predicate ' = M : A by
induction on A:

m If A=typethen ' E M : Awhen M —* M’ such that
e M| : Type.

miIf A=term B then " = M : A when M —* M’ and
B —* B' such that "'+ |M'| : |B/|.

36 /41



Reducibility

Let I’ be a context in X. Define the predicate ' = M : A by
induction on A:

m If A=typethen ' E M : Awhen M —* M’ such that
e M| : Type.

miIf A=term B then " = M : A when M —* M’ and
B —* B' such that "'+ |M'| : |B/|.

mIf A=Tlx: B.C then ' E M : A when for for all N such that
[MEN:B, I'EMN: {N/x}C.

36 /41



Reducibility

Let I’ be a context in X. Define the predicate ' = M : A by
induction on A:

m If A=typethen ' E M : Awhen M —* M’ such that
e M| : Type.

miIf A=term B then " = M : A when M —* M’ and
B —* B' such that "'+ |M'| : |B/|.

mIf A=TIx: B.C then [’ E M : A when for for all N such that
MeN:B, I"EMN:{N/x}C.
If o is a substitution mapping variables to terms:
ml"Eo:Twhenl["Eo(x):0(A)forall (x:A)eTl

36 /41



Soundness

IfT' = M : Ain AM1/X then for any X context [" and substitution o
such that "= o : T, " E o(M) : o(A).

By induction on the derivation of T = M : A. OJ

37/41



Soundness

Theorem

IfT = M : Ain AM1/X then for any X context " and substitution o
such that "= o : T, " E o(M) : o(A).

Proof.
By induction on the derivation of T = M : A. OJ

Corollary (Conservativity)

IfF[T] = M : [A] then M —* M’ such that T + |M'| : A.

Proof.
By taking the identity substitution, ||o([A])|l = ||[A]l| = A. O

37/41



Relative normalization

m Avoid complex techniques such as reducibility candidates.
m Works for non-terminating theories!

m For pure type systems, Al1/X corresponds to a conservative
completion of X.

38/41



Summary

m Strong normalization = all terms in Al1/X are strongly
normalizing

m Proved using termination models

m Relative normalization = terms in Al1/X can be reduced to
terms in X.

m Proved by using reducibility on a more general statement

m Both approaches show conservativity of Al/X

39/41



Conclusion

m The Al-calculus modulo rewriting can be used as a logical
framework

m We use it for logical embeddings that preserve reduction

m Soundness needs to be handled carefully through models or
reducibility techniques

40/41



Conclusion

Questions?

41/41



	The -calculus as a logical framework
	The -calculus modulo rewriting as a logical framework
	Soundness in the -calculus modulo

